

P.R.China·Shandong·Tai'an

2013-3-12

Catalogue

Company Profile

The application of TCR in wind energy

The application of S-1 HMTM in wind energy

China National Materials Group Corporation Ltd.(Sinoma) established in 1983, which as a central government-administered enterprise directly under the administration of State-owed Assets Supervision and Administration Commission of the State Council (SASAC). A world`s pioneering nonmetallic materials manufacturer and a global leading provider of non-metallic materials technology, equipment & engineering.

China National Materials Company Limited is established by China National Materials Group Corporation and listed on the main board of Hong Kong Stock Exchange on December 2007. The Company is mainly engaged in cement equipment and engineering services, glass fiber, cement and high-tech materials business.

Taishan Fiberglass Inc.(CTG), is a wholly owned subsidiary company of China National Materials Co., Ltd.(01892.HK), and is committed to the expansion and innovation of the field of fiberglass composites.

sinoma

泰山玻璃纤维有限公司

中国山材 Taishan Fiberglass Inc.

Taishan Fiberglass Inc.

Footprint

Achievements

In year 2011, CTG had achieved sales volume up to 380K MT with sales revenue of 2.6 billion RMB. Its products are exported to over 60 countries and regions, including US, Europe, ME, etc.

Technology Rewards

As a national key high-tech enterprise, CTG has its own National Technology Center with 75 patents. It has undertaken more than 220 national, provincial and municipal technology plans and 2 nation "863" projects and 1 national science and technology support program successively and also obtained 1 national S&T process second award and 38 provincial and municipal S&T progress awards.

sinoma 中国中材

Products Application

Transportation, Electricity, Energy, Electronics, Construction, Water Supply, Environment Protection, etc.

Quality Assurance System

Taishan Fiberglass Inc., is committed in scientific and standardized management and has acquired certificates of International Quality Management System (ISO9001), **Environmental Management System** (IS014001); Occupational Health and Safety Management System (GB/T28001) and products are awarded Det Norske Veritas Type Approval Certificate (DNV), Lloyds **Register of Shipping (LR), Germanischer** Lloyd (GL) and China Classification Society (CCS), etc.

Prospect

Total Capacity 700,000MT/Y, included roving 570,000MT/Y, yarn 130,000MT/Y, electronic woven roving 300 million meters in 2020。

Capacity in Tai an 480,000MT 6 lines for roving 1 line for high-strength fiber Capacity inZoucheng220,000MT 2 lines for roving 3 lines for yarn

Sinoma 中国中材

TCR Fiberglass Acid Resistance Principle

TCR Fiberglass Composition

Si0 ₂	Al ₂ 0 ₃	Ca0	MgO	Fe_20_3	TiO ₂	Zr0 ₂	K ₂ 0	Na ₂ 0
60. 0	12. 9	22. 7	2. 55	0. 30	0. 30	0. 30	0. 22	0. 57

TCR Acid and Corrosion Resistance Principle :

> TCR fiberglass has much more silica framework

The more silica tetrahedron it has in glass framework, the better acid and corrosion resistance it will have. Because in the acid medium except the silica framework, most of the other ion will be dissolved, which lower the strength. The content of SiO_2 in TCR formulation reaches 60%, and the glass has lots of silica framework which leads to high acid resistance property.

> TCR glass with formulation of boron-free & fluoride-free

 B_2O_3 easily generates glass phase separation. The phase separation is due to the oxygen fight between SiO_2 and B_2O_3 when the glass cooled, hence, the existence of B_2O_3 will destroy the silica framework which lower the glass acid resistance and strength in some extent. TCR doesn't contain B_2O_3 , which eliminates the glass phase separation. That's the important reason of TCR has strong performance of acid resistance.

ZrO2 contains a superior acid & alkali corrosion resistance, which brought into TCR formulation

In silicate formulation, Zr0₂ has only one coordination of [ZrO8] and the Zr4+ exists as an external body in glass structure due to its big particle radius. Zr0₂ has very low solubility, but its superior property is to increase the alkali and acid resistance performance of glass.

Sinoma 中国中材

Performance of TCR vs E-glass

Performance	Test Standard/Method	E-glass	TCR	Difference
Density g/cm ³	ASTM D 1505	2.59	2.60	↑0.39%
Softening Temperature °C	ASTM C 338	840	910	↑8.3%
Refractive Index	Immersion Method	1.569	1.569	0
Elasticity Modulus GPa	Sonic Method	75	81	↑8%
Breaking Strength MPa	ASTM D 2343-95	2250	2367	↑5.2%
Acid Weightlessness %	96°C 10%H ₂ SO ₄ , 96h	40.17	3.9	↓90.3%
Expansion Coefficient 10 ⁻⁶ K ⁻¹	ASTM D 696	5.98	6.0	↑ 0.33%
Volume Resistivity Ω.cm	ASTM D 257	14.7	14.8	↑ 0.68%
Dielectric Constants	ASTM D 150	6.7	6.7	0

Sinoma 泰山玻璃纤维有限公司 中国印材 Taishan Fiberglass Inc.

TCR vs E-glass Acid Resistance Performance Testing

Tested Sample	Testing Item	Testing Method	E-glass	TCR
Direct Roving Vinyl resin	Laminates sheer Strength Loss	ASTM D2344	90%	7.25%
	Fiber Content	ISO 1172	71%	71%

FRP Composites in 10% H2_SO₄, 96°C,96h Acid Resistance Comparison Pictures

TCR Typical Application

High Pressure Gas Cylinder

High Pressure Pipe Line

Flue Gas Desulfurization Tower Wind Blade

TCR Applied in Wind Energy

Rovings for Wind Energy Product Code Example: TCR920W-2400-17

Fiberglass Type	Product Name	Nominal Liner Density Range	Nominal Filament Diameter Range	Applied Resin
E close	T912	300tex~2400tex	14µm~17µm	UP/VE
E-glass	T920W	300tex~2400tex	$14 \mu m \sim 17 \mu m$	EP
TCD along	TCR912	300tex~2400tex	$14 \mu m \sim 17 \mu m$	UP/VE
ICK-glass	TCR920W	300 tex \sim 2400tex	14μm~17μm	EP

sinoma

TCR Applied in Wind Energy

Fabrics for wind blades

Products Type	Product Name	Width Range	Applied Resin
Warp Knitting UD	EUL1200 (0) EP-600E7	100 \sim 2540mm	
	EUL1200 (0) C50EP-600E6	100 \sim 2540mm	
Warp Knitting Biaxial	EBX800 (+45/-45) EP-1270E6	100 \sim 2540mm	
	EBX1200 (+45/-45) EP-1270E6	100 \sim 2540mm	
Warp Knitting Triaxial	ETL1000 (0/+45/-45) EP-1270E6	100 \sim 2540mm	UP/EP/VE
	ETL1200 (0/+45/-45) EP-1270E6	100 \sim 2540mm	
	ETL1215 (0/+45/-45) EP-1270E6	100 \sim 2540mm	
	ETT1200 (+45/90/-45) EP-1270E6	100 \sim 2540mm	
Weaving	ECW700 (0) -900	100 \sim 3400mm	
UD	ECW1200(0)-650	$100{\sim}3400$ mm	UP

Sinoma 泰山玻璃纤维有限公司 中国印材 Taishan Fiberglass Inc.

TCR Applied in Wind Energy

Fabrics applied for nacelle & its mould

Products Type	Product Name	Width Range	Applied Resin
РР	ECW600/180(pp)/624(0,90)-1270	200~2540	
Compound Mat	ECW600/180(pp)/600-1270	200~2540	
Warp Knitting Biaxial	EBLT800 (0/90) UP-1270E7	$100 \sim 2540$	
	EBLT600 (0/90) C300UP-1270E7	$100 \sim 2540$	
Diumui	EBLT800 (0/90) C225UP-1270E7	$100 \sim 2540$	UP
	EQLT800 (0/+45/90/-45) UP-1270E10	100~2540	
Warp Knitting	EQLT2000 (0/+45/90/-45) UP-1270E5	$100 \sim 2540$	
Quadraxial	EQL2000 (0/+45/90/-45) UP-1270E6	$100 \sim 2540$	
	EQT2000 (0/+45/90/-45) UP-1270E10	100~2540	

sinoma

TCR Multi-Axial Fabrics Composites Performance Testing Data

UD EUL1200(0)EP Laminated Sheet

Testing	Testing Item		Testing Data	
0° Tancila	Strength MPa	180527 5	1080	
0 Tensne	Modulus GPa	150527-5	41.1	
0° Compress	Strength MPa	ISO14126	825	
0 Compress	Modulus GPa	15014120	47	
00° Tancila	Strength MPa	180527 5	65.2	
90 Telislie	Modulus GPa	150327-3	14.5	
00° Compress	Strength MPa	ISO14126	194	
90 Compress	Modulus GPa	15014120	14.4	
Shoor	Strength MPa	15014120	51.8	
Silvai	Modulus GPa	15014129	3.99	

sinoma

TCR Multi-Axial Fabrics Composites Performance Testing Data

Biaxial EBX808(+45/-45)EP Laminated Sheet

Testing	g Item	Testing Standard	Testing Data
Tansila	Strength MPa	180527 5	702
Tensne	Modulus GPa	150527-5	7-5 31.5
Compress	Strength MPa	15014126	448
	Modulus GPa	15014126	28
Shear	Strength MPa	15014120	48.3
	Modulus GPa	15014129	3.98

Sinoma 中国中材

TCR Multi-Axial Fabrics Composites Performance Testing Data

Triaxial ETL1215(0/+45/-45)EP Laminated Sheet

Testing Item		Testing Standard	Testing Data
0° Tancila	Strength MPa	180527 5	812
0 Tensne	Modulus GPa	150527-5	33 630
0° Commerces	Strength MPa	15014126	630
0 Compress	Modulus GPa	Pa ISO14126 33.8	33.8
90° Tensile	Strength MPa	180527 5	138
90 Tensne	90° Tensile Modulus GPa ISO52	150327-3	14.2
00° Commerces	Strength MPa	15014126	203
90° Compress	Modulus GPa	15014120	16.2
C1	Strength MPa	15014120	153
Silear	Modulus GPa	15014129	6.67

Sinoma 中国中材

Sinoma

agy

The Cooperation between AGY & CTG

S-1 HMTM Rovings Features and Benefits

 3 Sizing chemistries for compatibility with epoxy and polyester re 4 Direct roving product form tailored for conversion to unidirecti fabrics and prepregs and multi-axial fabrics 	Sizing chemistries for compatibility with epoxy and polyester resins Direct roving product form tailored for conversion to unidirectional fabrics and prepregs and multi-axial fabrics Boron-free and environmentally friendly	2	Proprietary glass formulation designed to maximize performance properties while allowing for high volume, economical manufacture
4 Direct roving product form tailored for conversion to unidirectifabrics and prepregs and multi-axial fabrics	Direct roving product form tailored for conversion to unidirectional fabrics and prepregs and multi-axial fabrics Boron-free and environmentally friendly	3	Sizing chemistries for compatibility with epoxy and polyester resins
	Boron-free and environmentally friendly	4	Direct roving product form tailored for conversion to unidirectional fabrics and prepregs and multi-axial fabrics
Boron-free and environmentally friendly	Ŭ Ŭ		

S-1 HMTM rovings performance vs. E-glass

20% higher tensile modulus longer blades with no weight increase or weight reduction at same length **50% higher tensile strength higher loadings**

> **10x higher fatigue improved reliability and lower** total cost of ownership

S -1 HMTM Glass Properties

	AST M	Units	S-1 HM TM Glass	Typical R-Glass	Typical E-Glass
Glass Strand Properties Density Tensile Strength Specific Tensile Strength Tensile Modulus Specific Tensile Modulus	D2343 D2343	g/cc MPa 10 ³ m GPa 10 ³ m	2.55 3090 121 90 3.53	2.57 2700 105 83 3.23	2.58 2100 81 73 2.83
UD Fabric Laminate Properties (60% FVF) Tensile Strength Tensile Modulus Compressive Strength Compressive Modulus Flexural Strength	D3039 D3039 D3410 D3410 D790	MPa GPa MPa GPa MPa	1230 51 850 51 1390	1050 47 720 46 1260	775 40 600 41 1200

sinoma

S -1 HMTM Glass Properties

Prospection

S-1 HMTM fibers, developed as a next generation of S-Series® glass products, offers the highest mechanical properties while meeting the economic needs for the reinforcement market. AGY has a long history standing track record of meeting the demands for challenging customer requirements with unique and dynamic modifications of glass chemistries while CTG/Taishan Fiberglass Inc. brings its innovation, experience and skills in the large scale manufacture of glass fiber rovings.

We expect that our S-1 HMTM fibers could provide the wider option and superior service for the development of wind energy industry.

Thank You!

Sinoma 泰山玻璃纤维有限公司 中国中材 Taishan Fiberglass Inc.